
109 — Competitive Programming

Notes taken by Nolan Chai

Spring 2023

1

Contents Competitive Programming

Contents

1 Problem Set 0 4
1.1 POJ 1004: Financial Management . 4
1.2 POJ 1477: Box of Bricks (37.4%) . 5
1.3 POJ 3030: Nasty Hacks (69.2%) . 7
1.4 POJ 3096: Surprising Strings (60.3%) 8
1.5 POJ 3852: String LD (51.5%) . 10
1.6 POJ 1917: Automatic Poetry (48.8%) 11
1.7 POJ 2719: Faulty Odometer (61.3%) 12
1.8 POJ 2413: How many Fibs? (35.04%) 13
1.9 POJ 1338: Ugly Numbers (42.1%) . 14
1.10 POJ 2354: Titanic (26.7%) . 15

2

Contents Competitive Programming

Preface

These are a collection of notes personally taken by me, specifically for readings and
allotted content for UCSD’s CSE 109 Competitive Programming taken in Spring
2023. These notes are planned to extend beyond CSE 109 as I hope to get better at
competitive programming. Additionally, these are not endorsed by the lecturers nor
staff, and I have modified them (often significantly) over random periods of time. They
may become nowhere near accurate representations of what was actually lectured, or
written in the books, and are simply to aid in my own understanding. In particular,
all errors are almost surely mine.

These notes differ from others in that these are not lecture based, but rather, competition
and approach based. I’m personally new to competitive programming, and much of
these notes will contain logical errors / fallacies that I will try my best to fix.

My other notes are available here.

3

https://nolanchai.dev/notes/

1 Problem Set 0 Competitive Programming

1 Problem Set 0

1.1 POJ 1004: Financial Management

Description: Larry graduated this year and finally has a job. He’s making a lot of
money, but somehow never seems to have enough. Larry has decided that he needs to
grab hold of his financial portfolio and solve his financing problems. The first step is to
figure out what’s been going on with his money. Larry has his bank account statements
and wants to see how much money he has. Help Larry by writing a program to take his
closing balance from each of the past twelve months and calculate his average account
balance.

Input: The input will be twelve lines. Each line will contain the closing balance
of his bank account for a particular month. Each number will be positive and displayed
to the penny. No dollar sign will be included.

Output: The output will be a single number, the average (mean) of the closing
balances for the twelve months. It will be rounded to the nearest penny, preceded
immediately by a dollar sign, and followed by the end-of-line. There will be no other
spaces or characters in the output.

Approach: At a high level, I approach this by first seeing that we can simply loop over
the input twelve times, each time adding to the sum and dividing by twelve. I know
magic numbers are bad, but this specific case seems alright.

1 Set variables .
2 For i from 0 to 12:
3 Input month
4 sum += month
5 Return string with sum/12

We can see that the runtime is trivially Θ(n), or, more accurately: Θ(n + 1) assuming
that initializing our variables do not take any time.

4

1 Problem Set 0 Competitive Programming

1.2 POJ 1477: Box of Bricks (37.4%)

Description: Little Bob likes playing with his box of bricks. He puts the bricks one
upon another and builds stacks of different height. ”Look, I’ve built a wall!”, he tells
his older sister Alice. ”Nah, you should make all stacks the same height. Then you
would have a real wall.”, she retorts. After a little con- sideration, Bob sees that she is
right. So he sets out to rearrange the bricks, one by one, such that all stacks are the
same height afterwards. But since Bob is lazy he wants to do this with the minimum
number of bricks moved. Can you help?

Input: The input consists of several data sets. Each set begins with a line containing
the number n of stacks Bob has built. The next line contains n numbers, the heights
hi of the n stacks. You may assume 1 ≤ n ≤ 50 and 1 ≤ hi ≤ 100.

The total number of bricks will be divisible by the number of stacks. Thus, it is
always possible to rearrange the bricks such that all stacks have the same height.

The input is terminated by a set starting with n = 0. This set should not be processed.

Output: For each set, first print the number of the set, as shown in the sample
output. Then print the line ”The minimum number of moves is k.”, where k is the
minimum number of bricks that have to be moved in order to make all the stacks the
same height.
Output a blank line after each set.

Sample input:

1 6
2 5 2 4 1 7 5
3 0

Sample output:

1 5

Approach: Firstly, we need to know what exactly the algorithm is doing. To make all
the stacks the same height, we essentially just find the average value per stack over the
number of stacks. In our sample, we have 4 to be the height of each stack. To get each
stack to the intended height, we either remove or add such that it reaches the average,
being ∣ height− average ∣, as order does not matter. Then, we divide the sum of these
values by two, as our actions are repeated twice (we move blocks from one to another).

5

1 Problem Set 0 Competitive Programming

Therefore, we have the following algorithm:

1 Set variables .
2 For each set :
3 set++
4 if (input = 0)
5 break and return
6 else {
7 moves = 0
8 average = 0
9 for each brick in stack :

10 average += brick
11 average = brick / stack length
12 for each brick in stack :
13 moves += abs(brick − average)
14 moves = moves / 2
15 }
16 Print out set and moves

We can see from the above that we have an approximate runtime of Θ(n), or more
specifically, Θ(2n + 3) assuming that our variables are initialized correctly.

6

1 Problem Set 0 Competitive Programming

1.3 POJ 3030: Nasty Hacks (69.2%)

Description: You are the CEO of Nasty Hacks Inc., a company that creates small pieces
of malicious software which teenagers may use to fool their friends. The company
has just finished their first product and it is time to sell it. You want to make as
much money as possible and consider advertising in order to increase sales. You get an
analyst to predict the expected revenue, both with and without advertising. You now
want to make a decision as to whether you should advertise or not, given the expected
revenues.

Input: The input consists of n cases, and the first line consists of one positive integer
giving n. The next n lines each contain 3 integers, r, e and c. The first, r, is the
expected revenue if you do not advertise, the second, e, is the expected revenue if you
do advertise, and the third, c, is the cost of advertising. You can assume that the input
will follow these restrictions: −106 ≤ r, e ≤ 106 and 0 ≤ c ≤ 106.

Output: Output one line for each test case: “advertise”, “do not advertise” or “does
not matter”, presenting whether it is most profitable to advertise or not, or whether it
does not make any difference.

Sample Input:

1 3
2 0 100 70
3 100 130 30
4 −100 −70 40

Sample Output:

1 advertise
2 does not matter
3 do not advertise

Approach: First, we make note that the algorithm takes in r, e, c for a total of n times.
Then, we can make a mathematical examination of what advertise, does not advertise,
and do not advertise really mean. We are essentially comparing two values: r and e− c.
Therefore, this problem can be trivially solved by looping over this comparison per line
like so:

1 Set variables .
2 For each line :
3 If (r = (e − c))
4 Print ”does not matter”
5 Elif (r > (e − c))
6 Print ”do not advertise ”
7 Else
8 Print ” advertise ”

As seen above, we have a runtime of Θ(n). However, do keep in mind that issues
may arise when trying to run loops this way along with the way inputs
are read in C++. In C++, we will need an additional while loop to continue while
inputs are being passed, which will result in the runtime being Θ(n2).

7

1 Problem Set 0 Competitive Programming

1.4 POJ 3096: Surprising Strings (60.3%)

Description: The D-pairs of a string of letters are the ordered pairs of letters that are
distance D from each other. A string is D-unique if all of its D-pairs are different. A
string is surprising if it is D-unique for every possible distance D.

Consider the string ZGBG. Its 0-pairs are ZG, GB, and BG. Since these three pairs are
all different, ZGBG is 0-unique. Similarly, the 1-pairs of ZGBG are ZB and GG, and
since these two pairs are different, ZGBG is 1-unique. Finally, the only 2-pair of ZGBG
is ZG, so ZGBG is 2-unique. Thus ZGBG is surprising. (Note that the fact that ZG is
both a 0-pair and a 2-pair of ZGBG is irrelevant, because 0 and 2 are different distances.)

Input: The input consists of one or more nonempty strings of at most 79 uppercase
letters, each string on a line by itself, followed by a line containing only an asterisk
that signals the end of the input.

Sample input:

1 ZGBG
2 X
3 EE
4 AAB
5 AABA
6 AABB
7 BCBABCC
8 ∗

Sample output:

1 ZGBG is surprising .
2 X is surprising .
3 EE is surprising .
4 AAB is surprising .
5 AABA is surprising .
6 AABB is NOT surprising.
7 BCBABCC is NOT surprising.

Approach: At a high level, the obvious solution would be to place the string into a
character array and linearly search each time. However, the issue here is how we search
in our implementation. My algorithm loops over each string in the input, and for each
character in the string, will loop per pair value to store all possible pairs in an array
and check to see if they are all unique using a boolean 2D array. We increment the pair
value per instance. Since the maximum distance of a pair is the length of the string
minus two, we compare and then either return surprising or not surprising.

8

1 Problem Set 0 Competitive Programming

Our algorithm would be as follows:

1 For string in input :
2 If string = ∗
3 Terminate
4 pair = 0
5 While loop:
6 array = []
7 pair++
8 For character in string :
9 if (pair + char index) <= len(string)

10 string pair = char[index] + char[pair+index]
11 Initialize a boolean array for array
12 For each pair in array :
13 Mark true in bool array if unique
14 If already explored , then break
15 If pair = (len(string − 2))
16 Print surprising
17 Else
18 Print not surprising

As we can see above, the runtime of our algorithm is Θ(n3). This is a naive approach,
and we can probably get this down to Θ(n2).

9

1 Problem Set 0 Competitive Programming

1.5 POJ 3852: String LD (51.5%)

Description: Stringld (left delete) is a function that gets a string and deletes its leftmost
character (for instance Stringld(“acm”) returns “cm”).

You are given a list of distinct words, and at each step, we apply stringld on every
word in the list. Write a program that determines the number of steps that can be
applied until at least one of the conditions become true:

1. A word becomes empty string, or

2. a duplicate word is generated.

For example, having the list of words aab, abac, and caac, applying the function on
the input for the first time results in ab, bac, and aac. For the second time, we get b,
ac, and ac. Since in the second step, we have two ac strings, the condition 2 is true,
and the output of your program should be 1. Note that we do not count the last step
that has resulted in duplicate string. More examples are found in the sample input
and output section.

Input: There are multiple test cases in the input. The first line of each test case
is n(1 ≤ n ≤ 100), the number of words.Each of the next n lines contains a string of at
most 100 lower case characters.The input terminates with a line containing 0.

Output: For each test case, write a single line containing the maximum number
of stringld we can call.

Sample Input:

1 4
2 aaba
3 aaca
4 baabcd
5 dcba
6 3
7 aaa
8 bbbb
9 ccccc

10 0

Sample Output:

1 1
2 2

10

1 Problem Set 0 Competitive Programming

1.6 POJ 1917: Automatic Poetry (48.8%)

Description: ”Oh God”, Lara Croft exclaims, ”it’s one of these dumb riddles again!”In
Tomb Raider XIV, Lara is, as ever, gunning her way through ancient Egyptian pyramids,
prehistoric caves and medival hallways. Now she is standing in front of some important
Germanic looking doorway and has to solve a linguistic riddle to pass. As usual,
the riddle is not very intellectually challenging.This time, the riddle involves poems
containing a ”Schuttelreim”. An example of a Schuttelreim is the following short poem:

Ein Kind halt seinen Schnabel nur,

wenn es hangt an der Nabelschnur.

A Schuttelreim seems to be a typical German invention. The funny thing about this
strange type of poetry is that if somebody gives you the first line and the beginning of
the second one, you can complete the poem yourself. Well, even a computer can do that,
and your task is to write a program which completes them automatically. This will help
Lara concentrate on the ”action” part of Tomb Raider and not on the ”intellectual” part.

Input: The input will begin with a line containing a single number n. After this
line follow n pairs of lines containing Schuttelreims. The first line of each pair will be
of the form

1 s1<s2>s3<s4>s5

where the si are possibly empty strings of lowercase characters or blanks. The second
line will be a string of lowercase characters or blanks ending with three dots ”...”. Lines
will be at most 100 characters long.

Output: For each pair of Schuttelreim lines l1 and l2 you are to output two lines
c1 and c2 in the following way: c1 is the same as l1 only that the bracket marks ”<”
and ”>” are removed. Line c2 is the same as l2, except that instead of the three dots
the string s4s3s2s5 should appear.

Sample input:

1 3
2 ein kind haelt seinen <schn>abel <n>ur
3 wenn es haengt an der ...
4 weil wir zu spaet zur <>oma <k>amen
5 verpassten wir das ...
6 <d>u ist
7 ...

Sample output:

1 ein kind haelt seinen schnabel nur
2 wenn es haengt an der nabel schnur
3 weil wir zu spaet zur oma kamen
4 verpassten wir das koma amen
5 du bist
6 bu dist

11

1 Problem Set 0 Competitive Programming

1.7 POJ 2719: Faulty Odometer (61.3%)

Description: You are given a car odometer which displays the miles traveled as an
integer. The odometer has a defect, however: it proceeds from the digit 3 to the digit
5, always skipping over the digit 4. This defect shows up in all positions (the one’s,
the ten’s, the hundred’s, etc.). For example, if the odometer displays 15339 and the
car travels one mile, odometer reading changes to 15350 (instead of 15340).

Input: Each line of input contains a positive integer in the range 1..999999999 which
represents an odometer reading. (Leading zeros will not appear in the input.) The end
of input is indicated by a line containing a single 0. You may assume that no odometer
reading will contain the digit 4.

Output: Each line of input will produce exactly one line of output, which will contain:
the odometer reading from the input, a colon, one blank space, and the actual number
of miles traveled by the car.

Sample input:

1 13
2 15
3 2003
4 2005
5 239
6 250
7 1399
8 1500
9 999999

10 0

Sample output:

1 13: 12
2 15: 13
3 2003: 1461
4 2005: 1462
5 239: 197
6 250: 198
7 1399: 1052
8 1500: 1053
9 999999: 531440

12

1 Problem Set 0 Competitive Programming

1.8 POJ 2413: How many Fibs? (35.04%)

Description: Recall the definition of the Fibonacci numbers:

f1 ∶= 1

f2 ∶= 2

fn ∶= fn−1 + fn−2 (n ≥ 3)

Given two numbers a and b, calculate how many Fibonacci numbers are in the range
[a,b].

Input: The input contains several test cases. Each test case consists of two non-
negative integer numbers a and b. Input is terminated by a = b = 0. Otherwise,
a ≤ b ≤ 10100. The numbers a and b are given with no superfluous leading zeros.

Output: For each test case output on a single line the number of Fibonacci numbers fi
with a <= fi <= b.

Sample Input:

1 10 100
2 1234567890 9876543210
3 0 0

Sample Output:

1 5
2 4

13

1 Problem Set 0 Competitive Programming

1.9 POJ 1338: Ugly Numbers (42.1%)

Description: Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The
sequence

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, ...

shows the first 10 ugly numbers. By convention, 1 is included. Given the integer n,write
a program to find and print the n’th ugly number.

Input: Each line of the input contains a positive integer n (n ≤ 1500).Input is terminated
by a line with n=0.

Output: For each line, output the n’th ugly number . Don’t deal with the line
with n = 0.

Sample Input:

1 1
2 2
3 9
4 0

Sample Output:

1 1
2 2
3 10

14

1 Problem Set 0 Competitive Programming

1.10 POJ 2354: Titanic (26.7%)

Description: It is a historical fact that during the legendary voyage of ”Titanic” the
wireless telegraph machine had delivered 6 warnings about the danger of icebergs. Each
of the telegraph messages described the point where an iceberg had been noticed. The
first five warnings were transferred to the captain of the ship. The sixth one came late
at night and a telegraph operator did not notice that the coordinates mentioned were
very close to the current ship’s position.

Write a program that will warn the operator about the danger of icebergs!

Input: The input messages are of the following format:

1 Message #<n>.
2 Received at <HH>:<MM>:<SS>.
3 Current ship ’ s coordinates are
4 <X1>ˆ<X2>’<X3>” <NL/SL>
5 and <Y1>ˆ<Y2>’<Y3>” <EL/WL>.
6 An iceberg was noticed at
7 <A1>ˆ<A2>’<A3>” <NL/SL>
8 and <B1>ˆ<B2>’<B3>” <EL/WL>.
9 ===

Here < n > is a positive integer, < HH >∶< MM >∶< SS > is the time of the message
reception, < X1 > ∧ < X2 >’< X3 >” < NL/SL > and < Y 1 > ∧ < Y 2 >’< Y 3 >”
< EL/WL > means ”X1 degrees X2 minutes X3 seconds of North (South) latitude
and Y1 degrees Y2 minutes Y3 seconds of East (West) longitude.”

Output: Your program should print to the output file message in the following format:

1 The distance to the iceberg : <s> miles.

Where < s > should be the distance between the ship and the iceberg, (that is the
length of the shortest path on the sphere between the ship and the iceberg). This
distance should be printed up to (and correct to) two decimal digits. If this distance is
less than (but not equal to!) 100 miles the program should print one more line with
the text:

1 DANGER!

Sample Input:

1 Message #513.
2 Received at 22:30:11.
3 Current ship ’ s coordinates are
4 41ˆ46’00” NL
5 and 50ˆ14’00” WL.
6 An iceberg was noticed at
7 41ˆ14’11” NL
8 and 51ˆ09’00” WL.
9 ===

Sample Output:

15

1 Problem Set 0 Competitive Programming

1 The distance to the iceberg : 52.04 miles .
2 DANGER!

Hint: For simplicity of calculations assume that the Earth is an ideal sphere with the
diameter of 6875 miles completely covered with water. Also you can be sure that lines
in the input file break exactly as it is shown in the input samples. The ranges of the
ship and the iceberg coordinates are the same as the usual range for geographical
coordinates, i.e. from 0 to 90 degrees inclusively for NL/SL and from 0 to 180 degrees
inclusively for EL/WL.

16

	=Problem Set 0
	POJ 1004: Financial Management
	POJ 1477: Box of Bricks (37.4%)
	POJ 3030: Nasty Hacks (69.2%)
	POJ 3096: Surprising Strings (60.3%)
	POJ 3852: String LD (51.5%)
	POJ 1917: Automatic Poetry (48.8%)
	POJ 2719: Faulty Odometer (61.3%)
	POJ 2413: How many Fibs? (35.04%)
	POJ 1338: Ugly Numbers (42.1%)
	POJ 2354: Titanic (26.7%)

