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Preface

These are a collection of notes personally taken by me, specifically for readings and
allotted content for UCSD’s COGS 185 Advanced Machine Learning Methods taken
in Spring 2023. These notes are not endorsed by the lecturers nor staff, and I have
modified them (often significantly) over random periods of time. They may become
nowhere near accurate representations of what was actually lectured, or written in the
books, and are simply to aid in my own understanding. In particular, all errors are
almost surely mine.
Notes are taken real time, and will be reviewed, updated, and revised within 48 hours of
each lecture.

My other notes are available here.
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0 Introduction

The course site is available here.

The main thing we’ll be going over in this course is context - the most important
thing in modern machine learning. In general, when we say context - we mean two
things: context within an instance such as yourself as a person (reasons why you
decide on things, such as why you chose UCSD, or a particular subject), and context
across instances (across a population - similarities with other people).

We’ll proceed incrementally, beginning with a review of supervised learning into
multiclass/multi-label classification, structural predictions, sequence modeling, semi-
supervised and unsupervised learning, self-supervised learning, sparse coding, and
reinforcement learning.

Logistics

The course is structured as a hybrid course, with lectures available both online and
in-person. The grade breakdown will be as follows:

• Assignments (4 total): 50%

• Midterm: 25%

• Final Project: 25%

• Bonus Points: 3% (Piazza, Final Project)

The midterm will be Thursday of week 4. Attendance is also not mandatory.
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1 A Review of Supervised Learning

To begin, what exactly is a pattern? Is it repetitive? Not really. You can refer to a plank
of wood, or a wooden tabletop, that contains a ’pattern’ but it may not necessarily
be repetitive. However, they can contain subjective, explicit, and implicit descriptions.
They do not necessarily have to contain common features.

Then what is not a pattern? No ”pattern” is also a pattern. Unpredictability can be a
pattern. In essence, everything is a pattern.

1.1 Structure

But also, what is structure, then? When we look at a small segment of images, it’s very
difficult to understand the underlying structure without context. Supervised learning is
basically a massive encoder for context.

The main scheme for structures is as follows:

• Structure within a data sample (supervised)

• Structure between data samples (semi-supervised)

• Structure within a sample (unsupervised)

1.2 Trends in AI

We’ve started from logical and hard-coded artifical intelligence (traditional AI) to
statistical analyses to machine learning, and now, finally artificial intelligence (modern
AI/ML). There is emphasis on two things: simplicity of capability / structure, and
scalability.

AutoML was a hot topic for a while until the release of ChatGPT, where the importance
of searching for best parameters was trivialized. Success in artificial intelligence and
machine learning revolves around the availability of large amounts of training data
(e.g., ImageNet), the access of modern computing infrastructures (e.g., Nvidia GPUs),
and new developments in neural networks with deep structures (e..g., AlexNet).

AlexNet was one of the most fundamental models, as it displayed the importance
of neural network architectures; and now, ChatGPT is the second major development
in terms of waking up the world to how important such landmarks are.

1.3 The three components of learning algorithms

We classify the main three components of learning algorithms under representation,
evaluation, and optimization. These are all typically very important, but in today’s
world, having good data is far more important than optimizing well.

Overall, Learning = Representation + Evaluation + Optimization.
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1.4 Structural Risk Minimization

Let ϕ(f) = the set of functions representable by f .
Suppose: ϕ(f1) ⊂ ϕ(f2) ⊂ ...ϕ(fn)
Then: h(f1) ≤ h(f2) ≤ ...h(fn)
We are trying to decide which machine to use. We train each machine and make a
table based on our standard optimization for generalization:

etesting ≤ etraining +

√
h(log(2n/h+ 1)− log(n/4)

n

The more complex the model is, the smaller the training error. However, the less
generalization capability it will subsequently have. Or...at least this is the case with
older models.

Suppose we increase the size and model complexity of ChatGPT’s parameters even
further than it is currently; let’s say 100x. Although this would typically result in
greater training error, it somehow doesn’t decrease in generalization - rather, it gets
better. This is the current state of LLMs, and why there is so much hype around it -
we want to push the boundaries to see how far this will go.

When you begin to solve a machine learning problem, you want to focus on first
understanding it by formulating it between an input and output state.

1.5 Context

Context comes from both within-data (parts/components) and between-data (configurations).
For instance, some problems may exist where, from a small section of an image, you
need context to understand the full image.

To formalize the problem, we can look at the image as a whole, then divide it into
patches like so:
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While subsequently labeling the images, which is a problem that we deal with - structural
information:

Which we can then use to vectorize into graphs:

In today’s world, we use dense graphs utilized by transformers. Before, we had
primarily focused on sparse graphs due to the fear that we could not deal with dense
graphs. Transformers are able to fully utilize dense graphs due to its adaptive attention
mechanism and connect everything - this is also related to why transformers have such
an incredible number of parameters.

This problem formulation can be represented by the following random fields:

• Markov Random Fields:

p(−→y | −→x ) ∝ p(−→y )p(−→x | −→y )

→ Π(i,j)∈Np(yi, yj) Πp(xi | yi)

• Conditional Random Fields:
p(−→y | −→x )

→ Π(i,j)∈Np(yi, yj | xi, xj) Πp(yi, xi)
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2 Basics

We begin with another emphasis on context. In large language models and natural
language processing, words are embedded via vectors in a latent space. The professor
displays a video which models this in relation to the human brain, where words are
mapped and grouped by semantics (closeness depending on words) - a brain map.

There are three key variables that we deal with for notation:

• Input: x = (x1, x2, ...)

• Label: y ∈ −1,+1

• Model parameter: W

2.1 A Brief History of Machine Learning

During the 1980s-1990s, there was much difficulty in categorizing neural networks
statistically, which pushed SVMs and kernels by the mid 1990s - which project lower
dimensional to higher dimensional spaces.

During the early 2000s, boosting - which combines multiple weak classifiers - emerged,
and was very popular. This led into the popularity of random forest models by the
2010s (and is still popular today - I use this in a lot of modern research still). Ensemble
learning is industrially known to always raise model performance by a few percent -
you can ensemble multiple models together and subsequently reduce variance, but keep
in mind that stacking ensemble models will give you diminishing returns at a point.

Furthermore, notice that the development of models has been historically dependent
on the increase in data availability over time. Random forests’ performance superseded
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boosting due to the fact that the randomness of training independent weak classifiers
was better than simply boosting.

Once we had larger datasets, with n > 1000 features, the increase in dimensionality
allowed linear SVMs to supersede kernel SVMs. In linear SVMs, we have a direct,
explicit loss whereas kernels are implicit. Tldr; linear for higher dimensions and kernel
for lower dimensions.

Interestingly enough, neural networks have become popular once again due to the
abundance of data and increase in dimensionality again with convolutional neural
networks and transformers.

Are deep learning models parametric or non-parametric?
Strictly following the definition of a neural network, deep learning models are parametric
since parameter size is fixed and initial parameters are predefined; despite the nonparametric
”flavor” of transformations done on hidden layers.

The parallelism between convolutional neural network trends to visual transformers is
not the same with SVM kernels to SVM linear models. This is because the introduction
of attention is much more intuitive and adaptive - it introduces a very real aspect of
intelligence (cognitive science) - into transformers; previously, all other classifiers were
similar to one another and had the same base mechanisms.

As seen above, the rank of algorithm performance on high dimensional data is

1. Random Forests

2. Neural Networks

3. Boosted Trees

4. SVMs

10



2 Basics Advanced Machine Learning Methods

2.2 Supervised & Unsupervised Learning

Almost everything today is linear in higher dimensions. Here, the professor goes through
both supervised and unsupervised learning very quickly; I will expand this section if
I ever get the chance / find time to, but this section was basically skipped as it’s all
basic knowledge.

2.3 Driving Factors of Machine Learning

To do well in machine learning, we need Intuition +Math/Statistics + Implementation/Coding.
However, with the recent release of transformers, the importance of data quality and
quantity has only been growing.

• Representation: With better and better understanding of theunderlining statistics
about the data and methods.

• Evaluation: The ideal strategy is always to aim at your targetdirectly (take
non-stop flight as opposed to having multiple stops).

• Optimization: Based on the chosen representation and evaluation,you pick a
strategy (mathematical/statistical) to achieve your goal.

• Data: Having sufficient amount of data for learning andjustification is increasingly
important.

• Computing power: In terms of both capacity and computation.

2.4 Mathematical representation for features

Given
S = {(xi), i = 1...n}, xi = (xi1, ..., xim)

What if it was a city: xi2 ∈ {Los Angeles, San Diego, Irvine} We cannot encode L.A.
to 1, SD to 2, and Irvine to 3, as it would imply LA + SD = Irvine.

Rather, we use One-Hot Encoding in which we expand the features to N-dimensions
for N number of possible states.

The pro is that we can naturally deal with any type of input (can associate confidence
directly), but the feature dimension has become much larger. Although this may seem
like we increase the computational requirements, it’s not much for modern architectures.

In this way, we now have access to utilize categorical values in the form of soft
values, with a probabilistic interpretation, that is measurable and comparable. One-
hot encoding gains in its convenience in a canonical mathematical representation by
sacrificing in the space complexity: one category of k-classes is turned into k real
numbers in [0, 1].
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2.5 Error Metrics and Object Functions

Modern developments of AI/ML has allowed for the establishment of benchmarks under
a widely accepted common evaluation metrics. Being able to faithfully compare the
performances of different machine learning algorithms/systems significantly propel the
advancement of the machine learning field as a whole.

Furthermore, establishing a clear objective function (errors + regularization) to optimize
when training machine learning algorithms is a key reason for the success of modern
machine/deep learning.

2.5.1 Summary of the problem

Straining = {(xi, yi), i = 1, ..., n}

x = (x1, ..., xm), xi ∈ R, x ∈ Rm

(will finish editing this section later when I have time, but is essentially review of
118A/150 concepts)

2.5.2 Standard Loss (error) function

The standard error which normalizes for 1 and 0, has the most direct loss but is very
difficult to decrease due to its zero gradient.

2.5.3 Decision Boundary

Will also review this later – First example, no because it says ge/le 0, but never crosses
0

The take-home message for decision boundaries is: – – I didn’t sleep last night /
have a few meetings later today lmao so I will revise a lot of this later tonight

12



3 Support Vector Machines Advanced Machine Learning Methods

3 Support Vector Machines

13



4 Softmax function Advanced Machine Learning Methods

4 Softmax function

14



5 Structured Prediction Advanced Machine Learning Methods

5 Structured Prediction

15



6 Random Fields Advanced Machine Learning Methods

6 Random Fields

16



7 Auto-Context Advanced Machine Learning Methods

7 Auto-Context

17



8 Auto-Context (Cont.) Advanced Machine Learning Methods

8 Auto-Context (Cont.)

18



9 Recurrent Neural Networks Advanced Machine Learning Methods

9 Recurrent Neural Networks

19



10 Recurrent Neural Networks (Cont.) Advanced Machine Learning Methods

10 Recurrent Neural Networks (Cont.)

20



11 Attention based models Advanced Machine Learning Methods

11 Attention based models

21



12 Transformers Advanced Machine Learning Methods

12 Transformers

22



13 Large Language Models Advanced Machine Learning Methods

13 Large Language Models

23



14 Compressive Sensing Advanced Machine Learning Methods

14 Compressive Sensing

24



15 Weakly-Supervised Learning Advanced Machine Learning Methods

15 Weakly-Supervised Learning

25



16 Self-Supervised Learning Advanced Machine Learning Methods

16 Self-Supervised Learning

26



17 Vision Transformers Advanced Machine Learning Methods

17 Vision Transformers

27



18 Generative Adversarial Networks Advanced Machine Learning Methods

18 Generative Adversarial Networks

28


	Introduction
	=A Review of Supervised Learning
	Structure
	Trends in AI
	The three components of learning algorithms
	Structural Risk Minimization
	Context

	=Basics
	A Brief History of Machine Learning
	Supervised & Unsupervised Learning
	Driving Factors of Machine Learning
	Mathematical representation for features
	Error Metrics and Object Functions
	Summary of the problem
	Standard Loss (error) function
	Decision Boundary


	=Support Vector Machines
	=Softmax function
	=Structured Prediction
	=Random Fields
	=Auto-Context
	=Auto-Context (Cont.)
	Recurrent Neural Networks
	Recurrent Neural Networks (Cont.)
	=Attention based models
	=Transformers
	=Large Language Models
	=Compressive Sensing
	=Weakly-Supervised Learning
	=Self-Supervised Learning
	=Vision Transformers
	=Generative Adversarial Networks

